

# A CALCULUS FOR SOFT INTERVENTIONS

**Juan D. Correa** <jdcorrea@cs.columbia.edu>

joint work with **Elias Bareinboim** <eb@cs.columbia.edu>

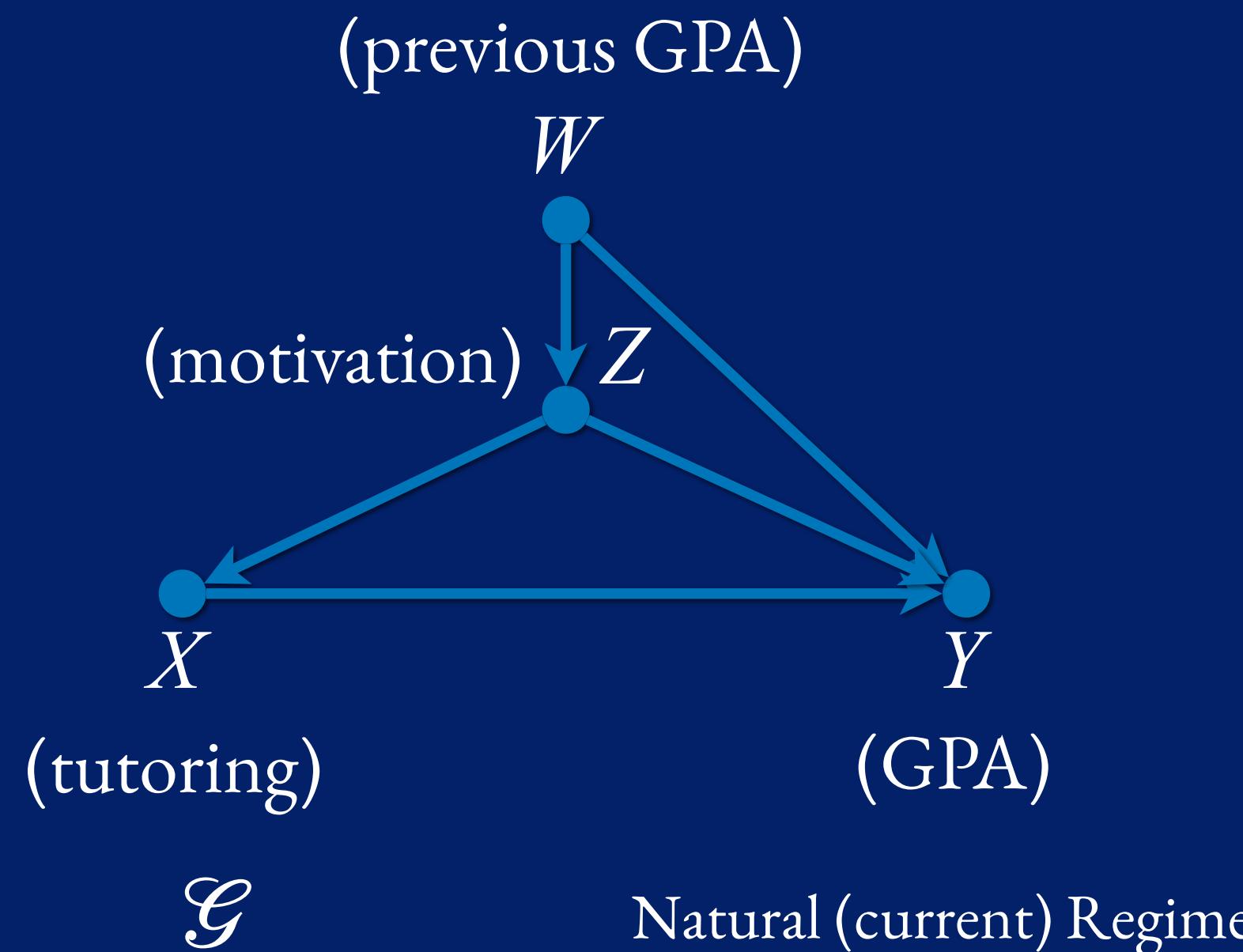
based on our paper in AAAI-20

 COLUMBIA UNIVERSITY  
IN THE CITY OF NEW YORK

**Causal Data  
Science Meeting  
Nov, 2020**

# Motivating Example - Tutoring Program

- For the students we observe their GPA at the beginning of the term, their motivation (low, high), whether they get tutoring or not, and their GPA at the end of the semester.

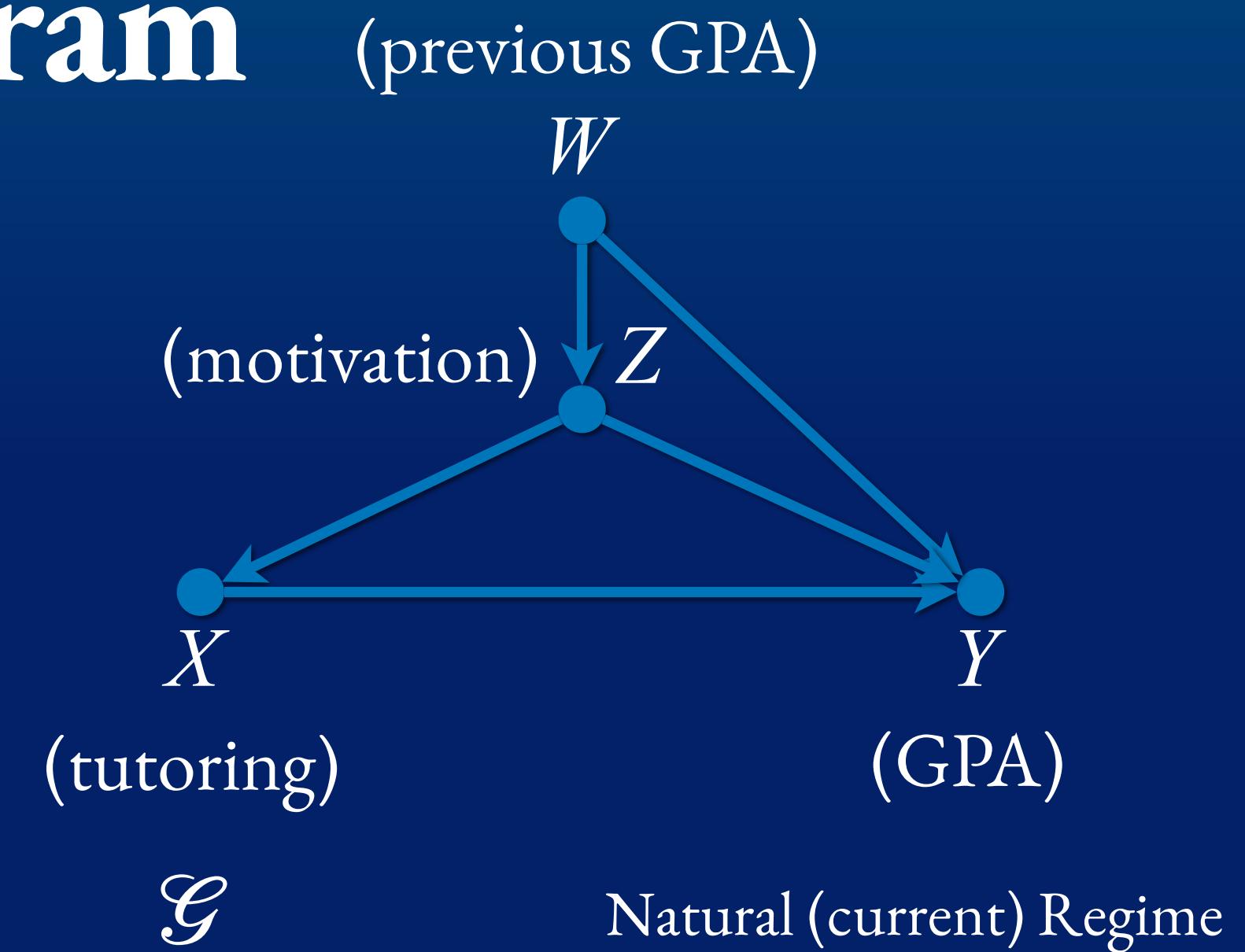


- Using machine learning, and with enough data, a student's GPA can be **predicted** with small error given other features i.e.,  $P(y | w, z, x)$ .
- However, this data reflects the **current/natural regime**, yet we aim to assess the impact of a **new unobserved policy** (intervention) on the students GPA.

# Motivating Example - Tutoring Program

- What can be inferred from  $P(W, Z, X, Y)$  and the causal graph in terms of causal effects?
- Possibly, the causal effect of  $X$  on  $Y$ , that is:

$$\begin{aligned}
 P(y \mid do(x)) &= \sum_z P(y \mid do(x), z)P(z \mid do(x)) \quad \text{Condition on } Z \\
 &= \sum_z P(y \mid do(x), z)P(z) \\
 &= \sum_z P(y \mid x, z)P(z)
 \end{aligned}$$

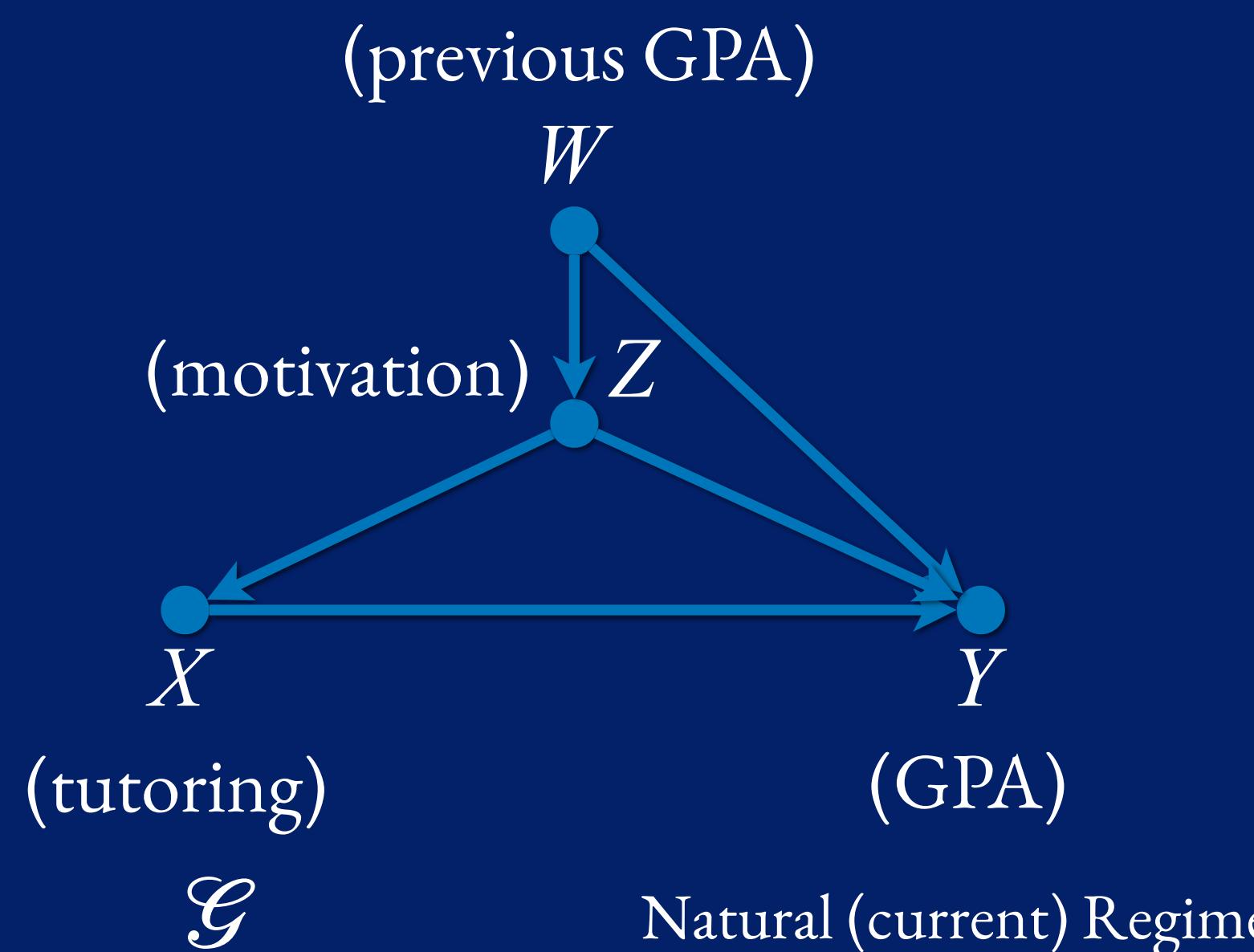
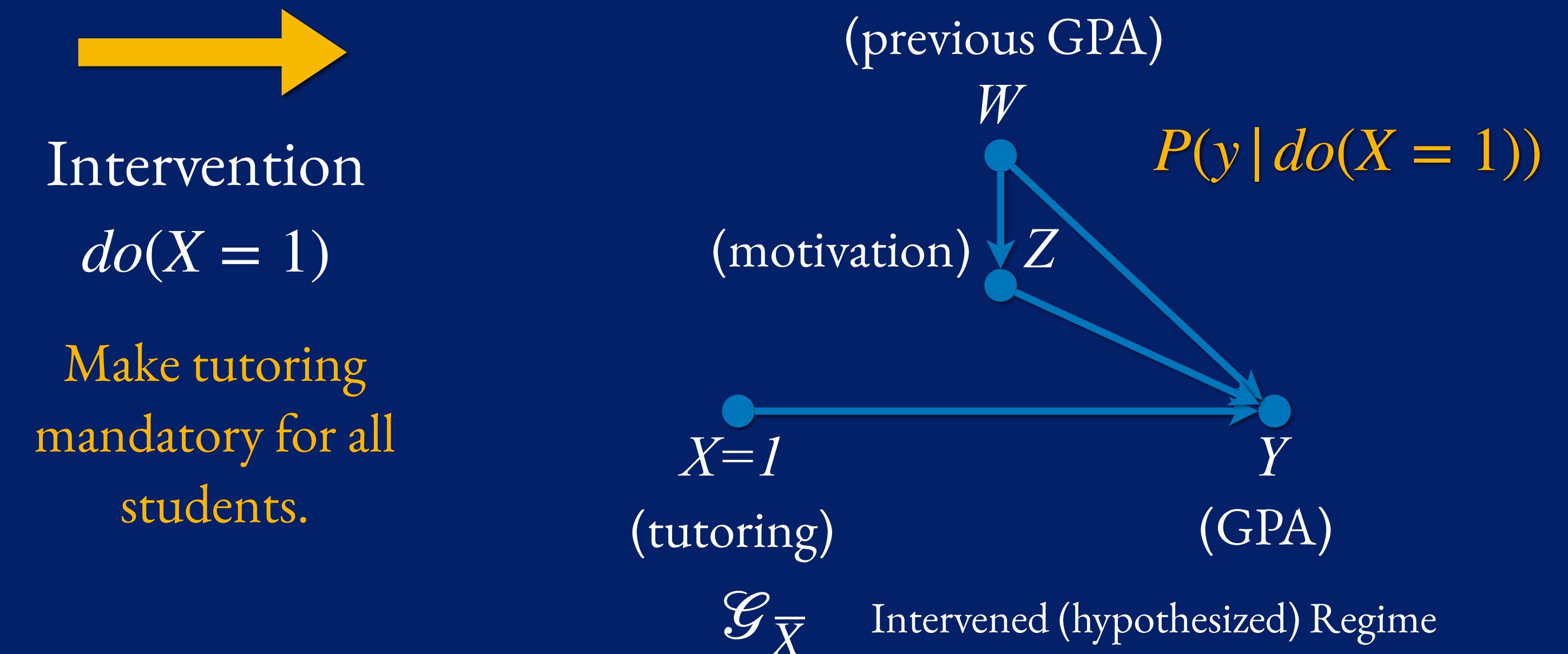


Or, simply note that  $Z$  is backdoor admissible relative to  $(X, Y)$ .

IS the same for  $Y$

# Motivating Example - Tutoring Program

- What does  $do(X = 1)$  mean in the real-world?
  - Make tutoring mandatory for every student



# Implementation of $\text{do}()$ -interventions

In decision making scenarios, even if the effect of a  $\text{do}()$  intervention is identifiable ...

- Available resources may be insufficient to implement the corresponding policy.
  - There are not enough teachers to cover all the hours of tutoring needed for every single student in the school.
- Effectiveness of the intervention cannot be guaranteed:
  - Patients assigned treatment may not follow it.

# Implementation of $\text{do}()$ -interventions (cont)

- For practical purposes, one may care about the effect of realizable interventions.

## Do-like Intervention

Make sure **no one** smokes

Provide treatment to **all** patients

Move a robotic arm **exactly** to coordinates (X, Y, Z)

Make **all** applicants male

## Realistic Intervention

Reduce tabaco consumption to **20%** of current consumption

Administer the treatment **if and only if** patient is in a critical condition

Move arm to (X, Y, Z) **w/** normally dist. error (considering physical constraints)

Mark all applicants as males (**on paper**)

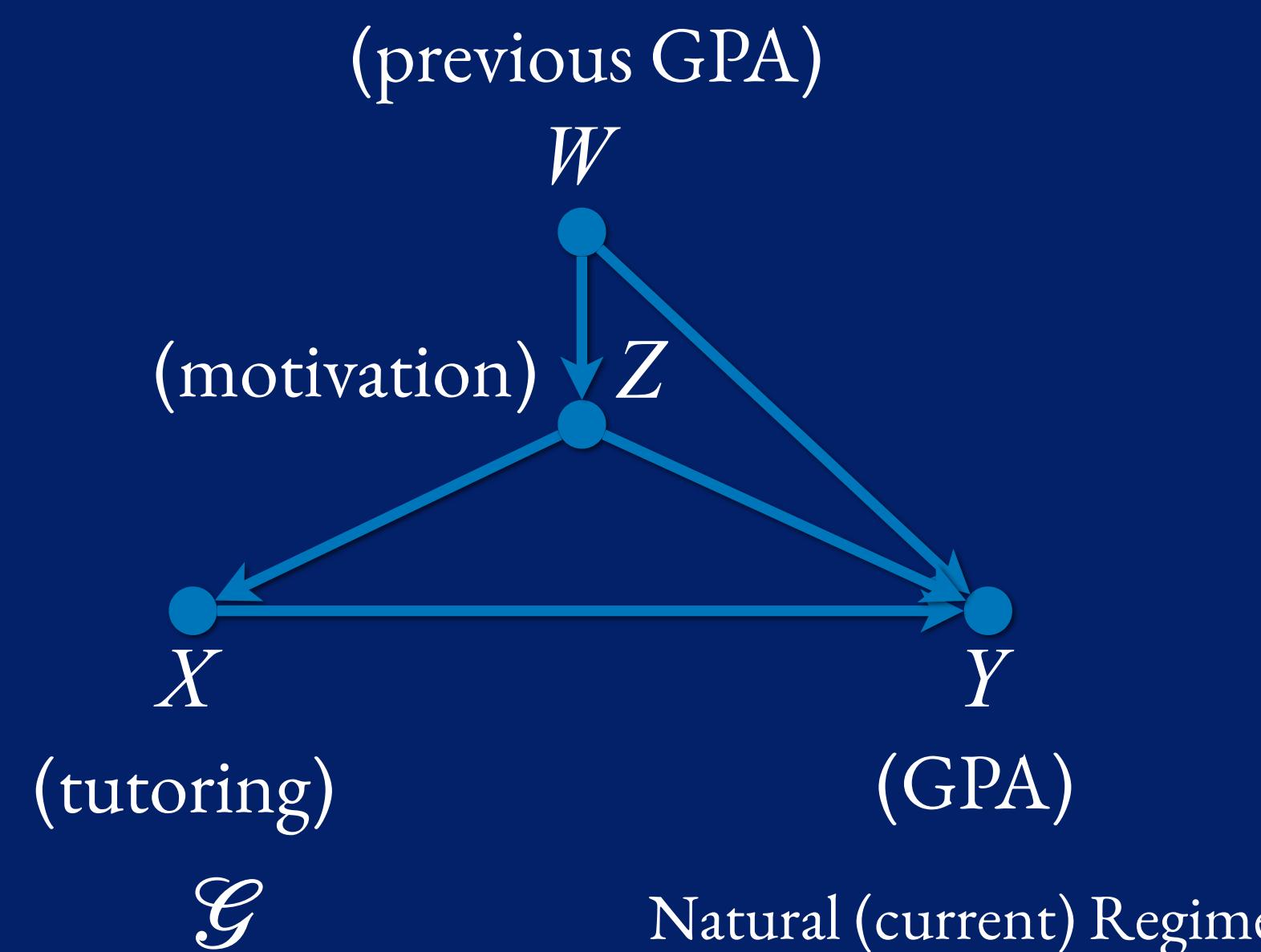
# Some Canonical types of Interventions [Dawid 02, Tian 08]

- **Hard/atomic:**  $\sigma_X = do(X = x)$  set variable  $X$  to a **constant** value  $x$ .  
(Do-calculus original treatment considered mostly this type of intervention. )
  - Every student gets tutoring.
- **Conditional:**  $\sigma_X = g(w)$  sets the variable  $X$  to output the result of a function  $g$  that depends on a set of observable variables  $W$ .
  - Students get tutoring if and only if they have a low GPA.
- **Stochastic:**  $\sigma_X = P^*(x | w)$  sets the variable  $X$  to follow a **given probability distribution** conditional on a set of variables  $W$ .
  - Students with low GPA enter a raffle for 80% of the spots, other interested students enter for the remaining 20%.

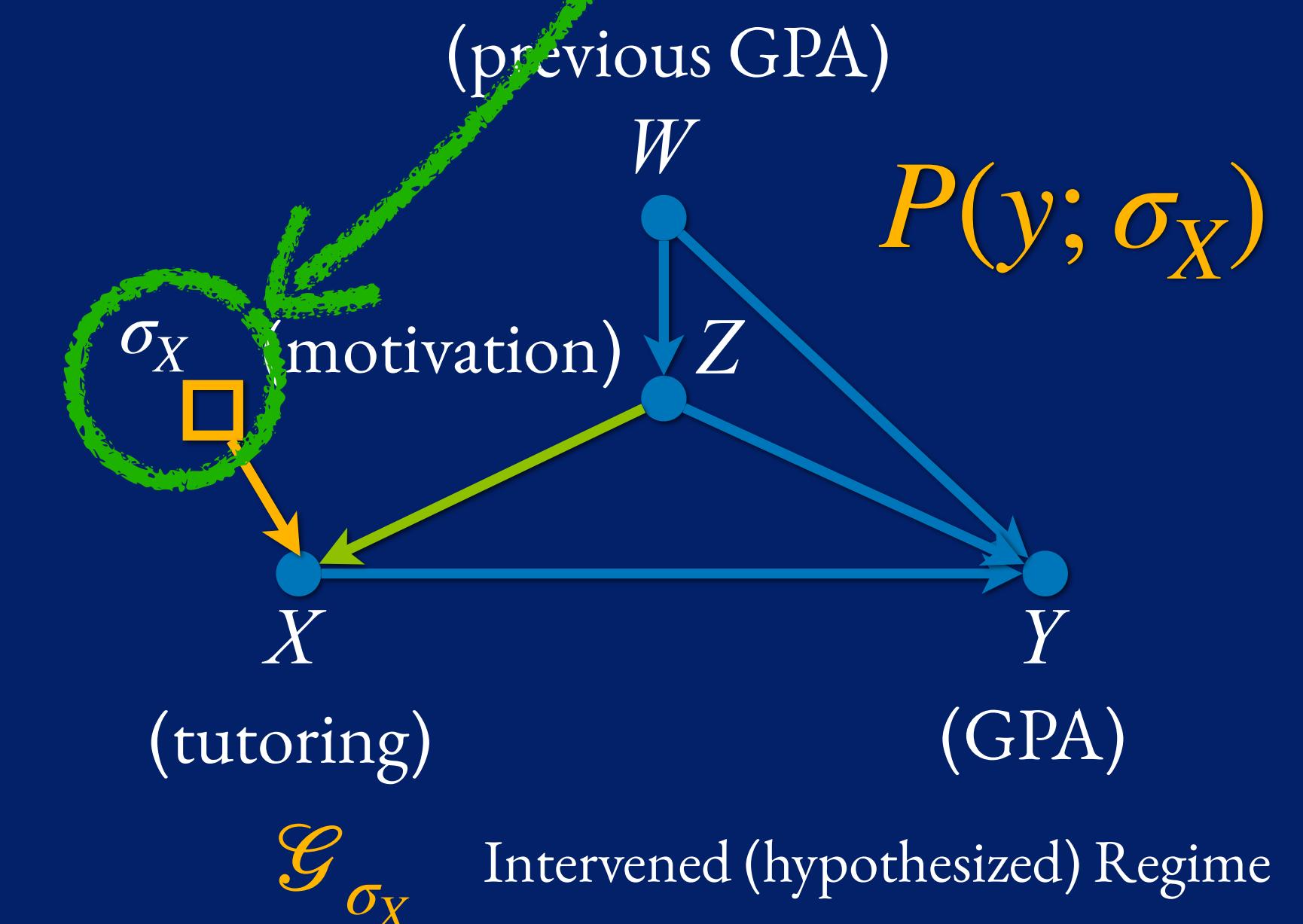
# A more realistic intervention

- Suppose  $P(X = 1 | Z = 1) = 0.3$ , that is, under normal conditions, only 30% of motivated students get tutoring.
- What is the effect of making it 60%? That is,  $P^*(X = 1 | Z = 1) = 0.6$

Regime node used to encode the fact that  $X$  has been intervened on.



Intervention  
 $\sigma_X = P^*(X = 1 | Z = 1)$   
Double participation  
rate in tutoring  
program for  
motivated students.



# Using do-calculus intuition

$$P(y; \sigma_X) = \sum_z P(y | z; \sigma_X) P(z) \quad \text{Condition on } Z$$

$$= \sum_z P(y | z; \sigma_X) P(z) \quad \text{Rule 3 } (Z \perp\!\!\!\perp X) \text{ in } \mathcal{G}_{\bar{X}}$$

$$= \sum_z \sum_x P(y | z, x; \sigma_X) P(x | z; \sigma_X) P(z) \quad \text{Condition on } X$$

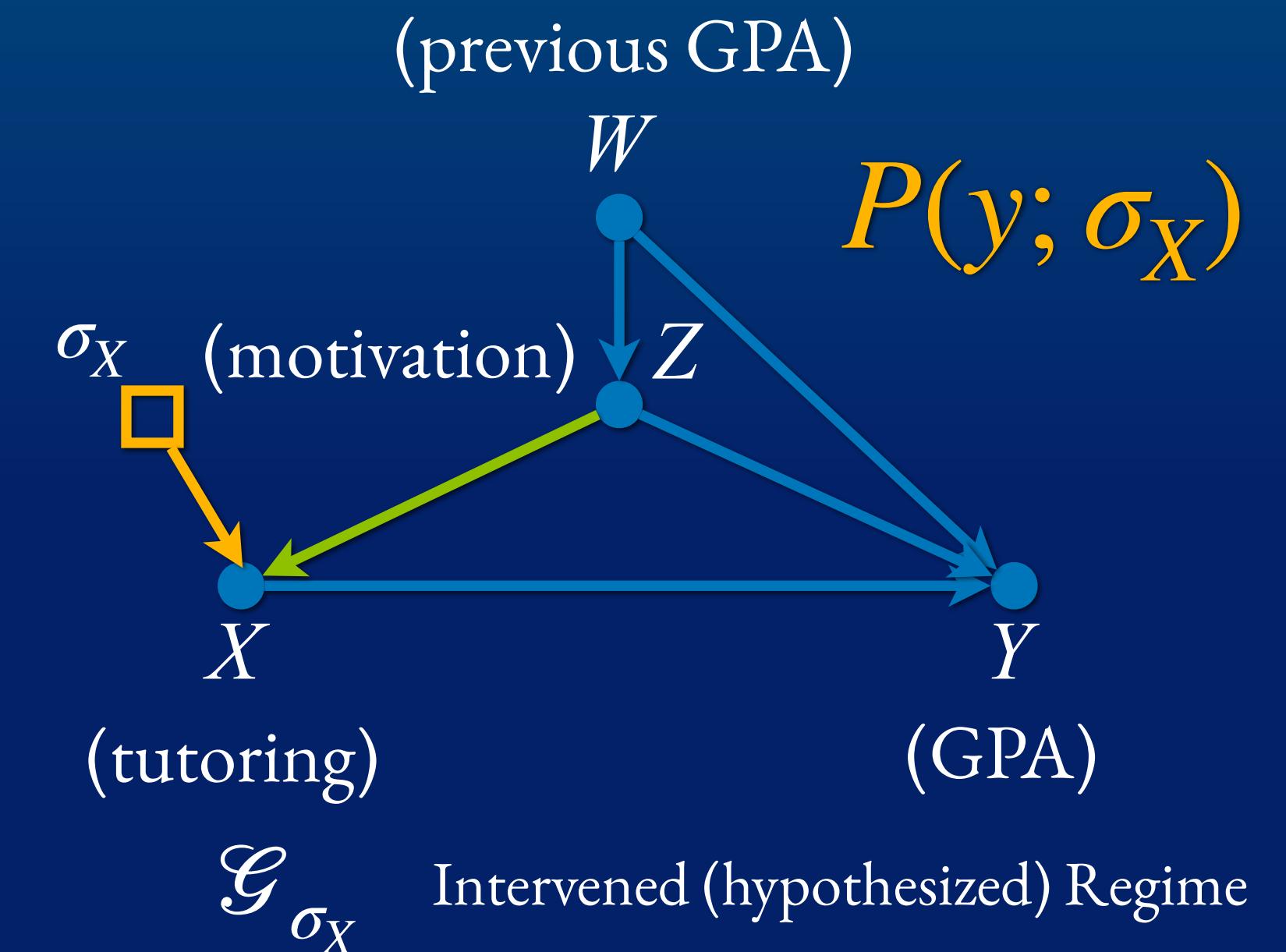
$$= \sum_z \sum_x P(y | z, x; \sigma_X) P^*(x | z) P(z) \quad \text{Definition of}$$

$$= \sum_z \sum_x \underline{P(y | z, x)} \underline{P^*(x | z)} \underline{P(z)} \quad \text{Rule 2 } (Y \perp\!\!\!\perp X | Z) \text{ in } \mathcal{G}_X$$

Estimable from current regime

Defined by  $\sigma_X$

<https://causalai.net>



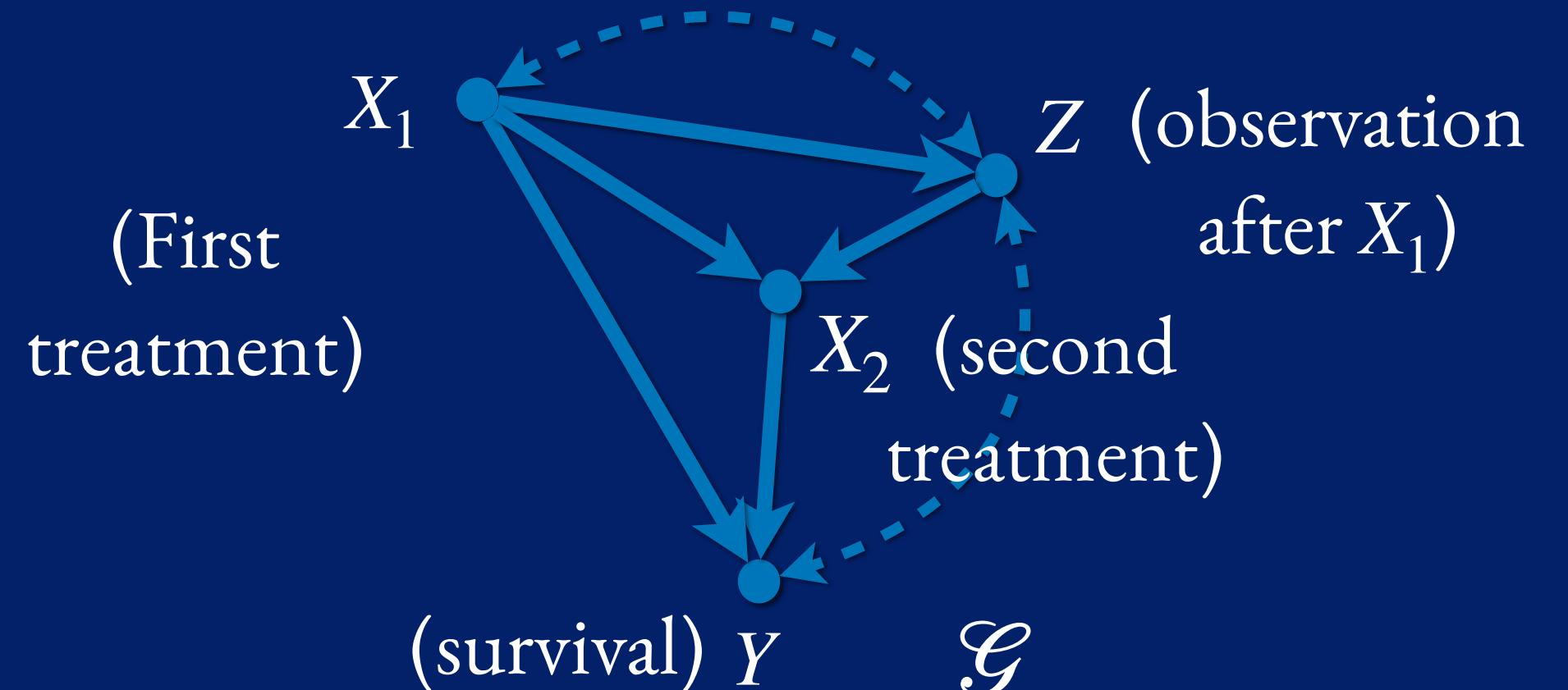
Is this derivation strategy (do-calculus-like) sufficient to solve the problem?

# Identifying the effect of soft interventions

- Although the identification of the effect of soft interventions can be reduced to identification of atomic interventions [Pearl 2000, Tian 2008], there is a gap in terms of end-to-end derivations, based on rules akin to do-calculus.
- Such rules allow for a better understanding not only of the assumptions entailed by the graphical model, but also for building intuition of the identification procedure.
- Next, we will see an example where this conceptual gap leads to an incorrect conclusion.

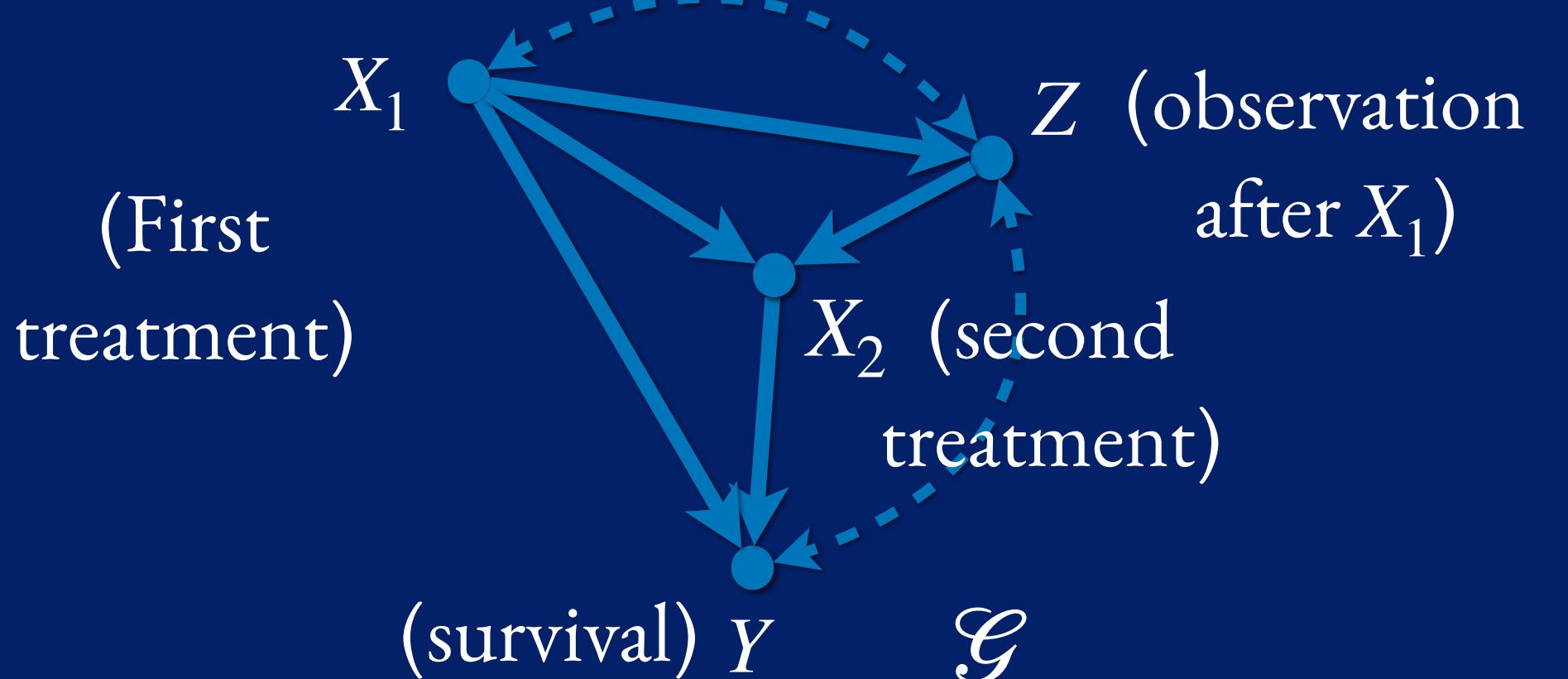
# A classical example [Pearl and Robins, 95]

- Consider a situation in which a patient receives a sequence of treatments (for now, say two times).
- After the first treatment  $X_1$ , a second physician checks the patient (and observes  $Z = z$ ), and then decide on a second treatment  $X_2$ .
- Finally the patient may survive or not;  $Y = 1$  or  $Y = 0$ , respectively.



# A classical example [Pearl and Robins, 95]

- What is the effect of an intervention when we fix  $X_1 = x_1$  but  $X_2 = g(x_1, z)$ , that is,  $X_2$  is prescribed depending on what  $x_1$  was and the observation  $Z$ .
- This can be written as  $do(x_1)$ ,  $do(x_2 = g(x_1, z))$  or  $\sigma_X = \{X_1 = x_1, X_2 = g(x_1, z)\}$ .



# A classical example [Pearl and Robins, 95]

- We could try to identify this as with do-interventions:

$$P(y | do(x_1), do(X_2 = g(x_1, z)))$$

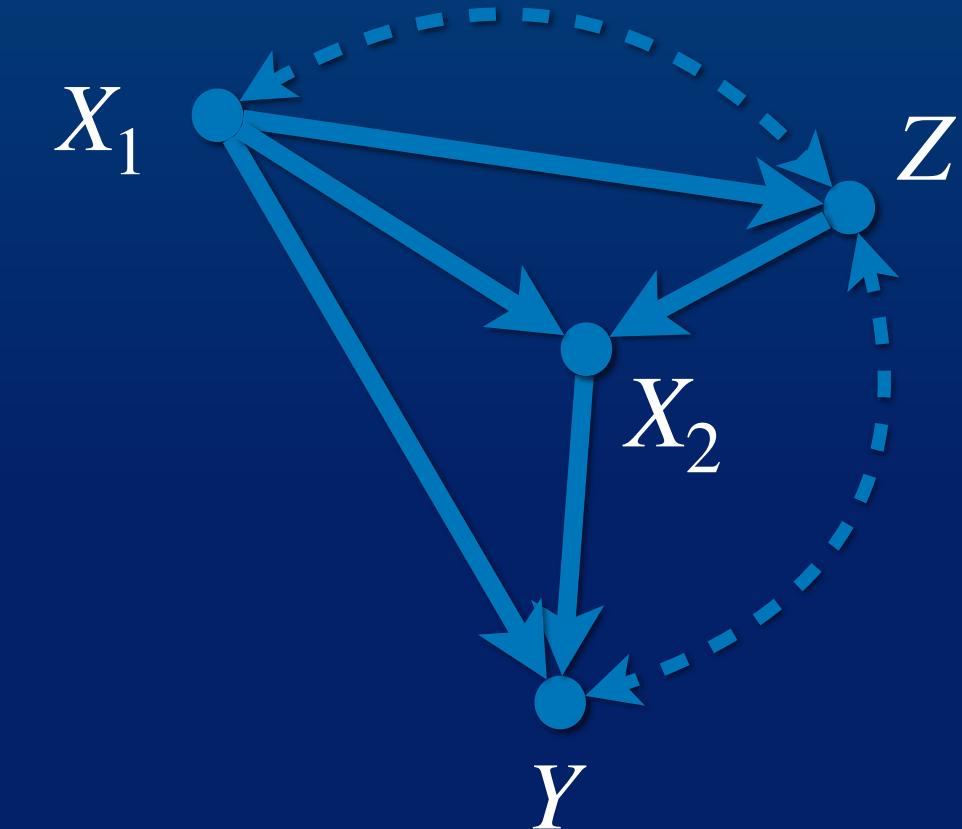
$$= P(y | x_1, do(X_2 = g(x_1, z))) \quad \text{Rule 2 } (Y \perp\!\!\!\perp X_1 | X_2) \text{ in } \mathcal{G}_{\overline{X_2} \underline{X_1}}$$

$$= \sum_z P(y | x_1, do(X_2 = g(x_1, z)), z) P(z | x_1, do(X_2 = g(x_1, z))) \quad \text{Condition on } Z$$

$$= \sum_z P(y | x_1, do(X_2 = g(x_1, z)), z) P(z | x_1)$$

Turns out this effect is not identifiable.  
What went wrong with the derivation?

$$= \sum_z P(y | x_1, x_2, z) |_{x_2=g(x_1, z)} P(z | x_1) \quad \text{Definition of } \sigma_X$$



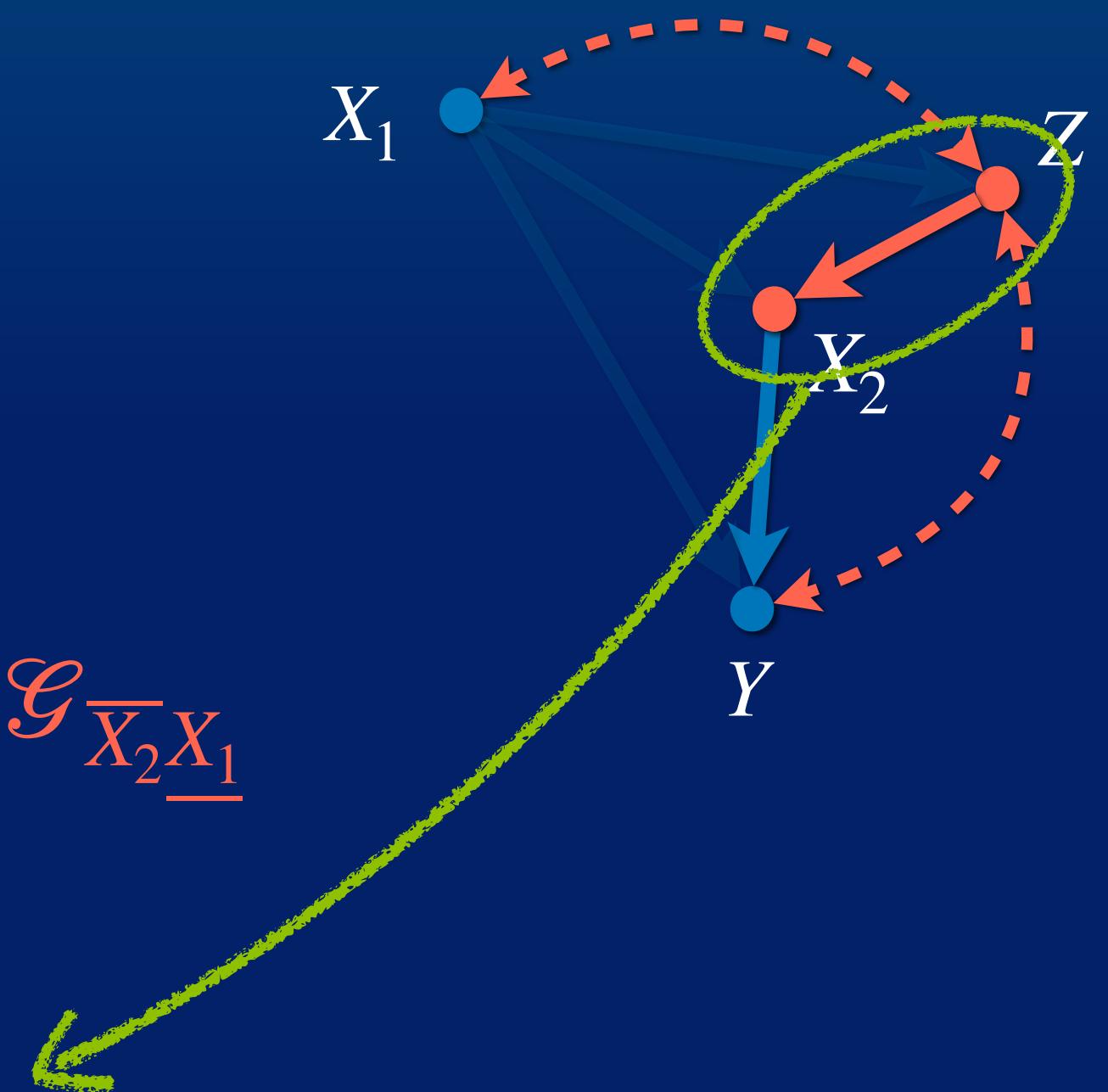
# A classical example [Pearl and Robins, 95]

- We could try to identify this as with do-interventions:

$$P(y | do(x_1), do(X_2 = g(x_1, z)))$$

$$= P(y | x_1, do(X_2 = g(x_1, z))) \quad \text{Rule 2 } (Y \perp\!\!\!\perp X_1 | X_2) \text{ in } \mathcal{G}_{\overline{X_2} \underline{X_1}}$$

- Under  $do(x_2 = g(x_1, z))$ , the edges incoming to  $X_2$  are still active, hence  $\mathcal{G}_{\overline{X_2} \underline{X_1}}$  is not the right graph to look at.
- This rule application needs to be considered w.r.t.  $\mathcal{G}_{\underline{X_1}}$ , where the separation does not hold due to the fact that, given the intervention on  $X_2$ ,  $Z$  becomes an active collider opening a bidirected path from  $X_1$  to  $Y$ .



# Where do-calculus intuition breaks

For do-interventions, any dependence between the intervened variable and its parents disappear, but for soft interventions may:

- keep all or some dependences with parents,
- change the distribution of the variable given its parents, or
- even add new dependences (new parents)

# Rules of $\sigma$ - calculus

- Rule 1
- do-calculus

$$P(\mathbf{y} \mid \text{do}(\mathbf{x}), \mathbf{w}, \mathbf{t}) = P(\mathbf{y} \mid \text{do}(\mathbf{x}), \mathbf{w}) \quad \text{if } (\mathbf{Y} \perp \mathbf{T} \mid \mathbf{W}, \mathbf{X}) \quad \text{in } \mathcal{G}_{\overline{\mathbf{X}}}$$

- $\sigma$ -calculus

$$P(\mathbf{y} \mid \mathbf{w}, \mathbf{t}; \sigma_{\mathbf{X}}) = P(\mathbf{y} \mid \mathbf{w}; \sigma_{\mathbf{X}}) \quad \text{if } (\mathbf{Y} \perp \mathbf{T} \mid \mathbf{W}) \quad \text{in } \mathcal{G}_{\sigma_{\mathbf{X}}}$$

- Graph depends on the specification of the intervention

# Rules of $\sigma$ - calculus

- Rule 2

- do-calculus

$$P(y \mid do(x), w) = P(y \mid \boxed{x}, w) \quad \text{if } (Y \perp X \mid W) \quad \text{in } \mathcal{G}_{\underline{X}}$$

X is observed

- $\sigma$ -calculus

$$P(y \mid x, w; \sigma_{\underline{X}}) = P(y \mid x, w) \quad \text{if } (Y \perp X \mid W) \quad \text{in } \boxed{\mathcal{G}_{\sigma_{\underline{X}} X} \text{ and } \mathcal{G}_{\underline{X}}}$$

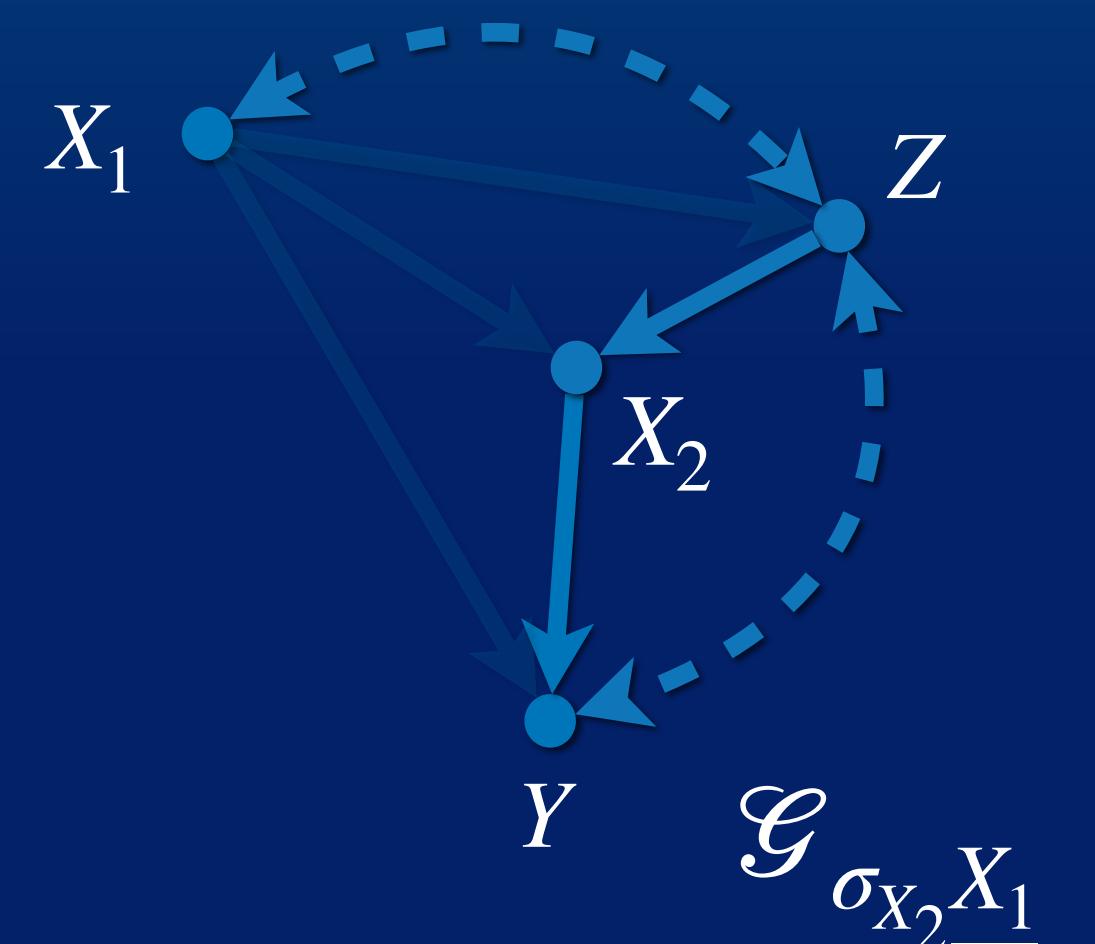
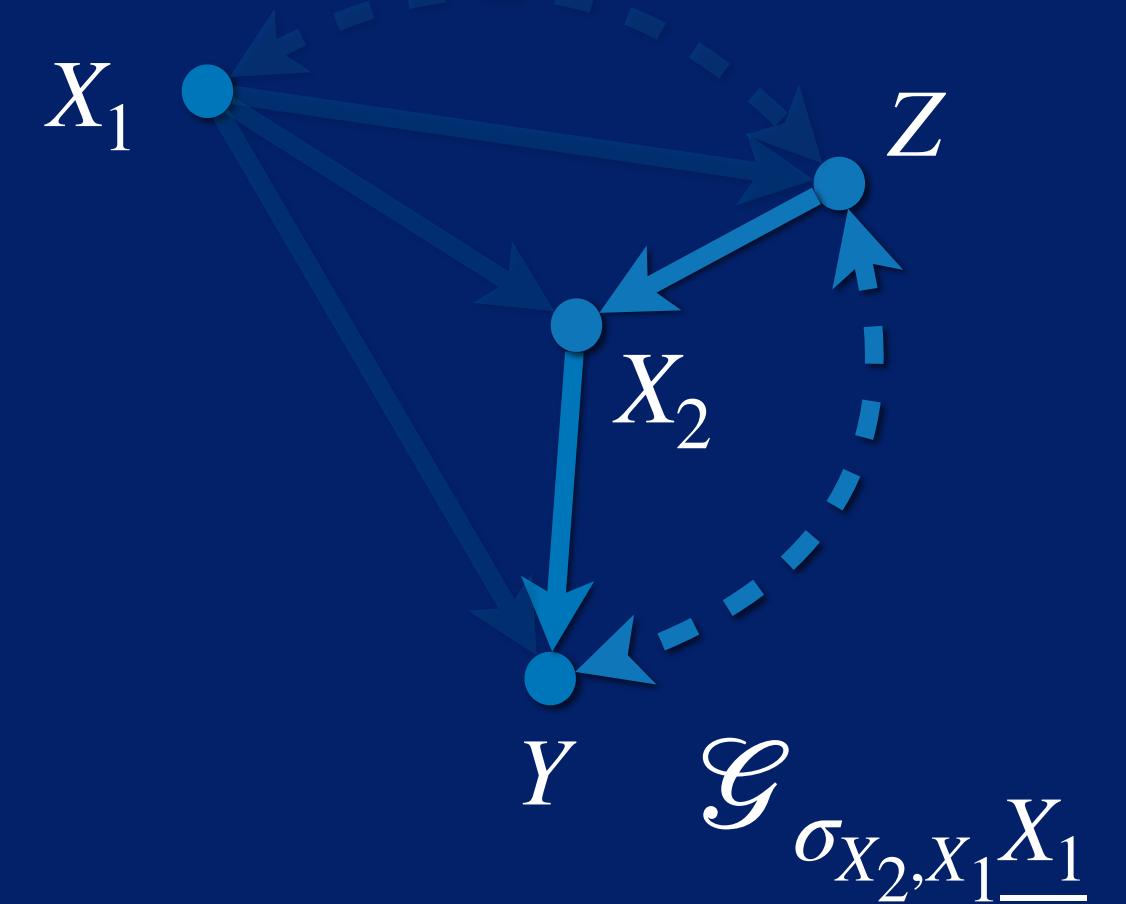
- Separation statement needs to hold in the pre-interventional and post-interventional graphs

# $\sigma$ -calculus will not allow this derivation

- Recall the sequential treatment example from before

$$\begin{aligned} P(y | do(x_1), do(X_2 = g(x_1, z))) \\ = P(y; \sigma_{X_1, X_2}) \end{aligned}$$

- If we try rule 2, the required separation is  $(Y \perp X_1)$  in the two graphs to the right.
- It holds only on the second one, so the rule is not applicable.



# Rules of $\sigma$ - calculus

- Rule 3

- do-calculus

$$P(\mathbf{y} \mid do(\mathbf{x}), \mathbf{w}) = P(\mathbf{y} \mid \mathbf{w}) \quad \text{if } (\mathbf{Y} \perp \mathbf{X} \mid \mathbf{W}) \quad \text{in } \mathcal{G}_{\overline{\mathbf{X}(\mathbf{W})}}$$

$X$  is not observed

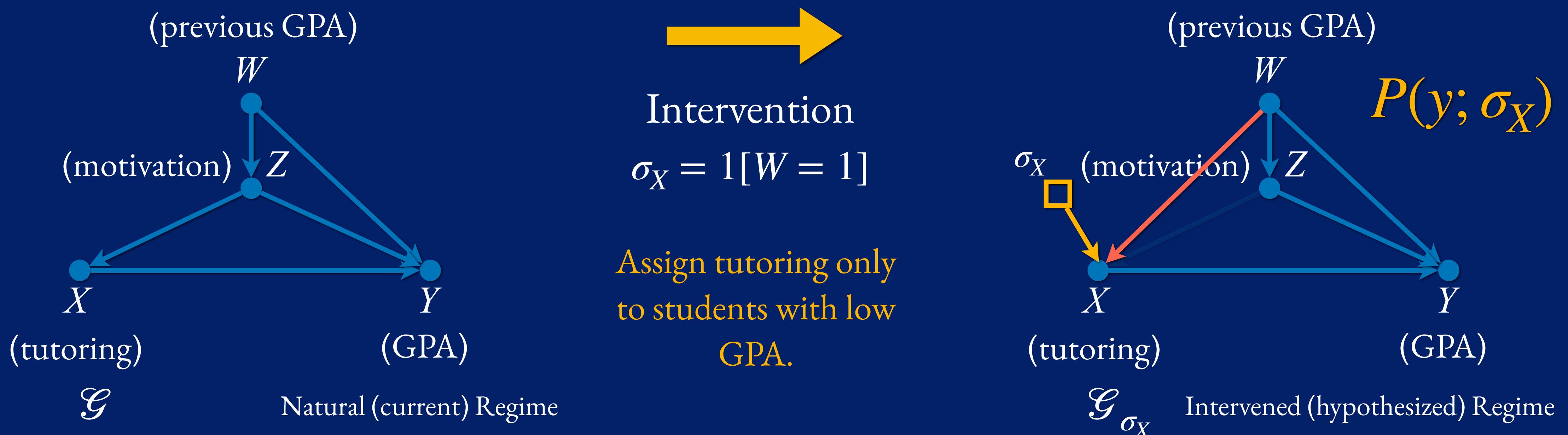
- $\sigma$ -calculus

$$P(\mathbf{y} \mid \mathbf{w}; \sigma_{\mathbf{X}}) = P(\mathbf{y} \mid \mathbf{w}) \quad \text{if } (\mathbf{Y} \perp \mathbf{X} \mid \mathbf{W}) \quad \text{in } \mathcal{G}_{\sigma_{\mathbf{X}} \overline{\mathbf{X}(\mathbf{W})}} \text{ and } \mathcal{G}_{\overline{\mathbf{X}(\mathbf{W})}}$$

- Separation statement needs to hold in the pre-interventional and post-interventional graphs

# Another intervention

- Resources are limited so we want to focus on students that need tutoring the most.
- From now on, students with low GPA have to get tutoring and the service will only be available to them. That is:  $P^*(X = 1 | W = 0) = 1, P^*(X = 1 | W = 0) = 0$ .

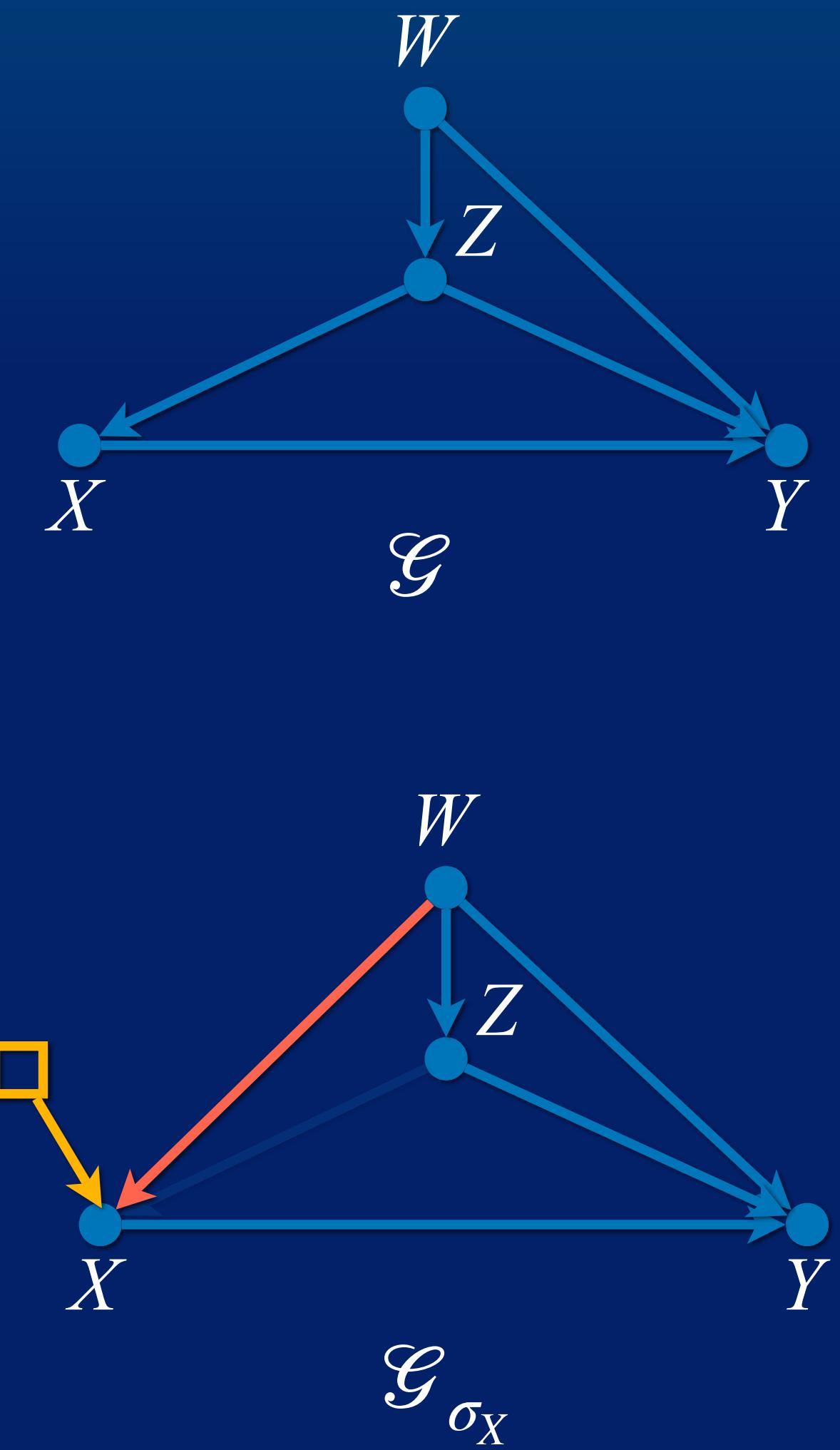


# Using $\sigma$ -calculus

$$\begin{aligned}
 P(y; \sigma_X) &= \sum_{w,z,x} P(y | x, w, z; \sigma_X) P(x | w, z; \sigma_X) P(w, z; \sigma_X) \\
 &= \sum_{w,z,x} P(y | x, w, z; \sigma_X) P(x | w; \sigma_X) P(w, z; \sigma_X) \\
 &\quad \text{Rule 1 } (X \perp Z | W) \text{ in } \mathcal{G}_{\sigma_X} \\
 &= \sum_{w,z,x} P(y | x, w, z) P(x | w; \sigma_X) P(w, z; \sigma_X) \\
 &\quad \text{Rule 2 } (Y \perp X | W, Z) \text{ in } \mathcal{G}_{\sigma_X \underline{X}} \text{ and } \mathcal{G}_{\underline{X}} \\
 &= \sum_{w,z,x} \underline{P(y | x, w, z)} \underline{P(x | w; \sigma_X)} \underline{P(w, z)}
 \end{aligned}$$

Rule 3  $(W, Z \perp X)$  in  $\mathcal{G}_{\sigma_X \bar{X}}$  and  $\mathcal{G}_{\bar{X}}$

Estimable from current regime      Defined by  $\sigma_X$



# Summary

- For many realistic situations, soft interventions are more suitable for representing plans and policies that can actually be implemented.
- We introduce a set of inference rules called  $\sigma$ -calculus, which generalizes Pearl's do-calculus, to reason about the effect of general types of interventions.
- These rules provide a syntactical method for deriving and verifying claims about soft interventions given a causal graph.

Thank you!

Questions?