

# Identification of Causal Effect in the Presence of Selection Bias

**Juan D. Correa**

Jin Tian

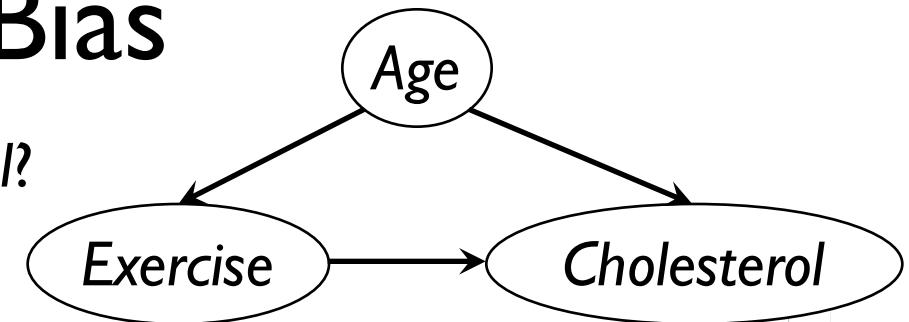
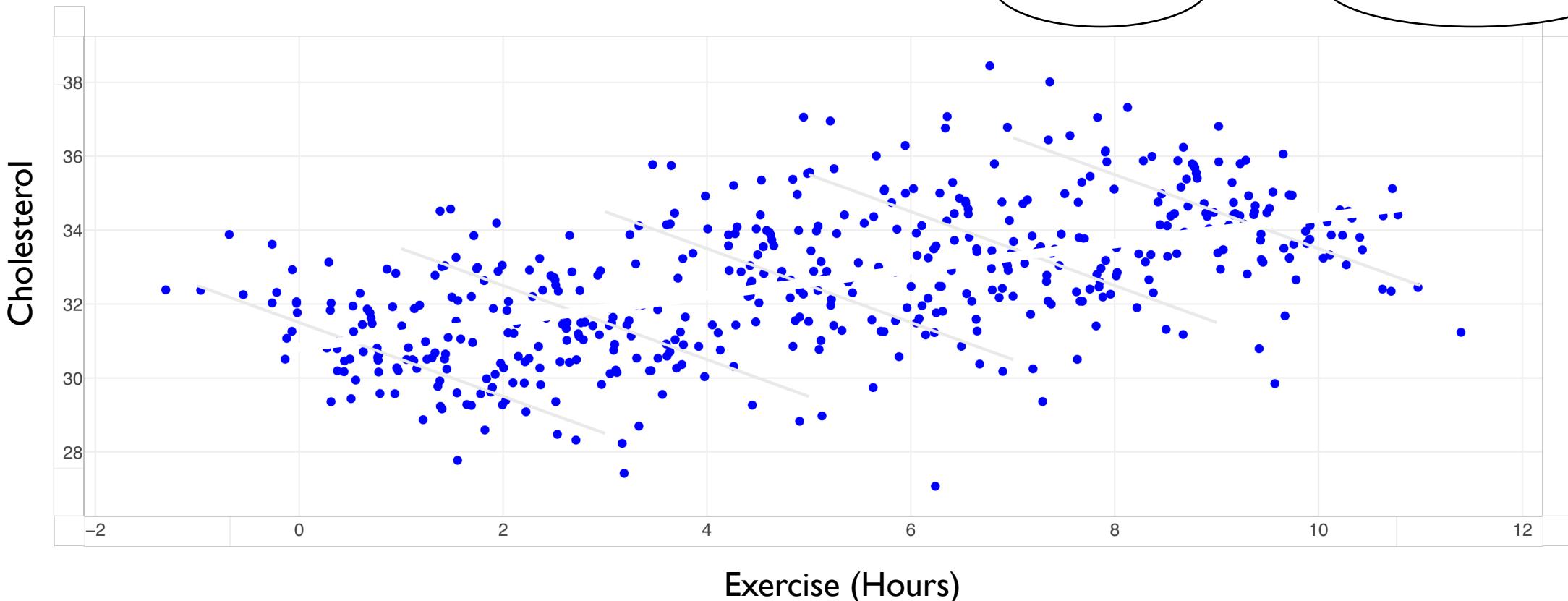
Elias Bareinboim

<sup>AAAI</sup>  
Honolulu, 2019

# Challenge I: Confounding Bias

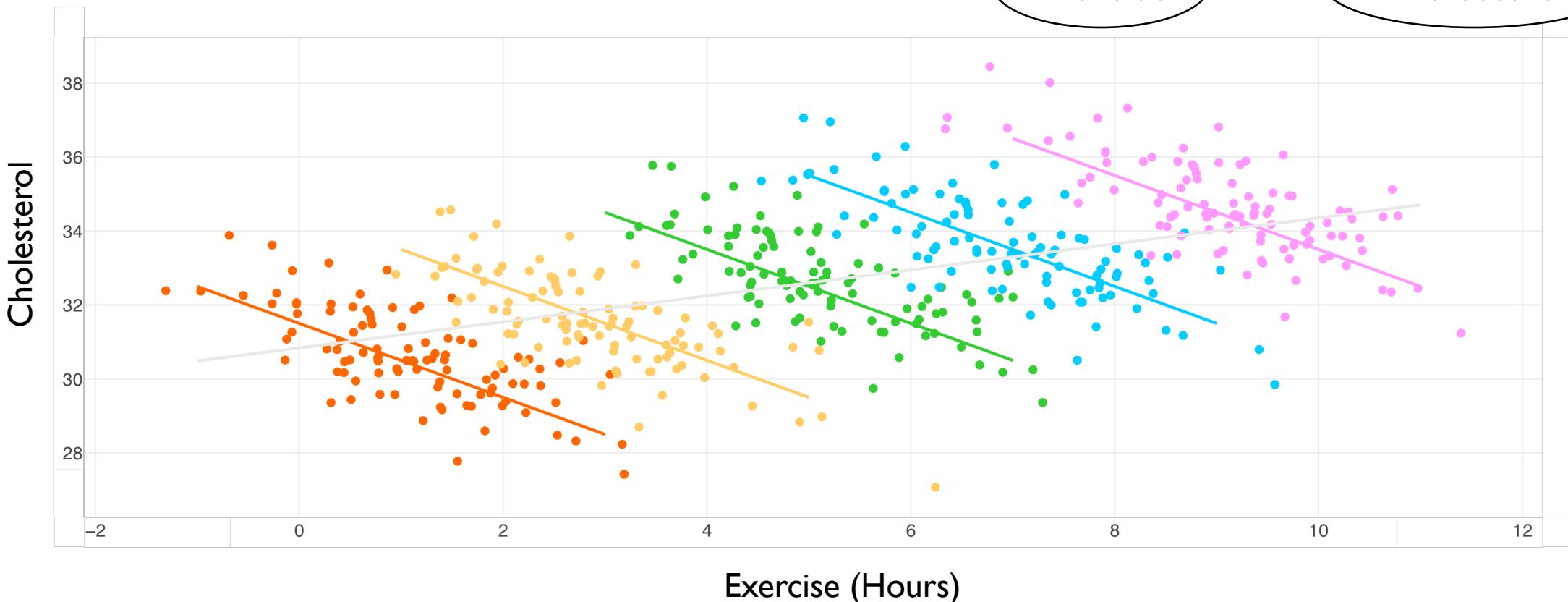
What's the causal effect of *Exercise* on *Cholesterol*?

What about  $P(\text{cholesterol} \mid \text{exercise})$  ?



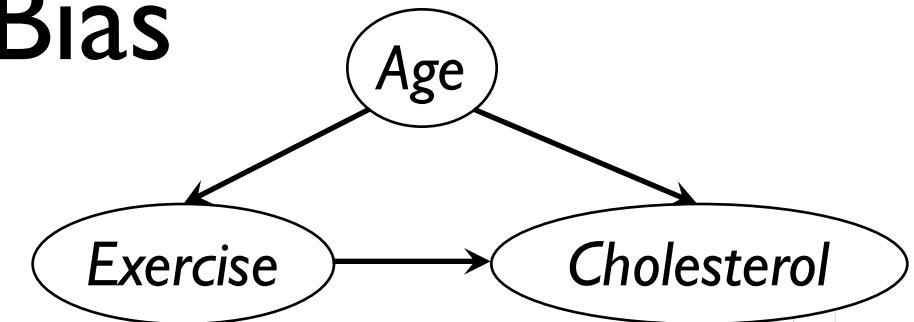
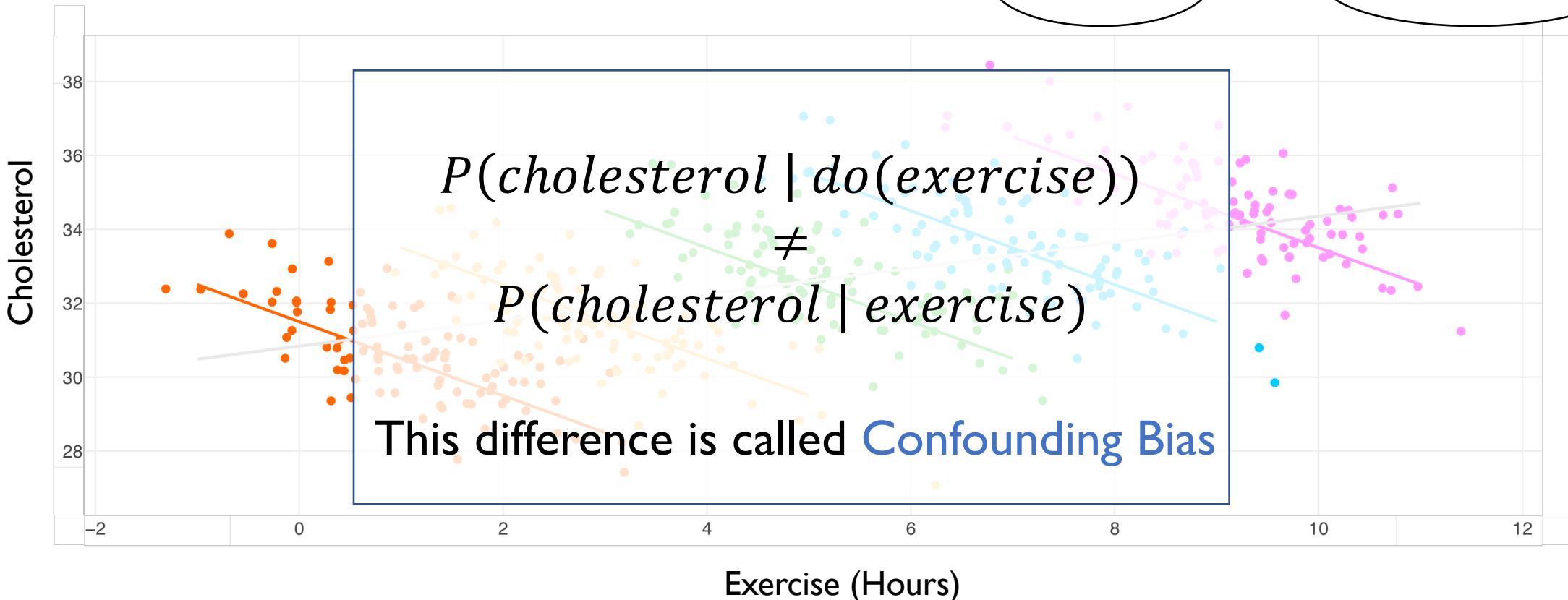
# Challenge I: Confounding Bias

- Age 10
- Age 20
- Age 30
- Age 40
- Age 50



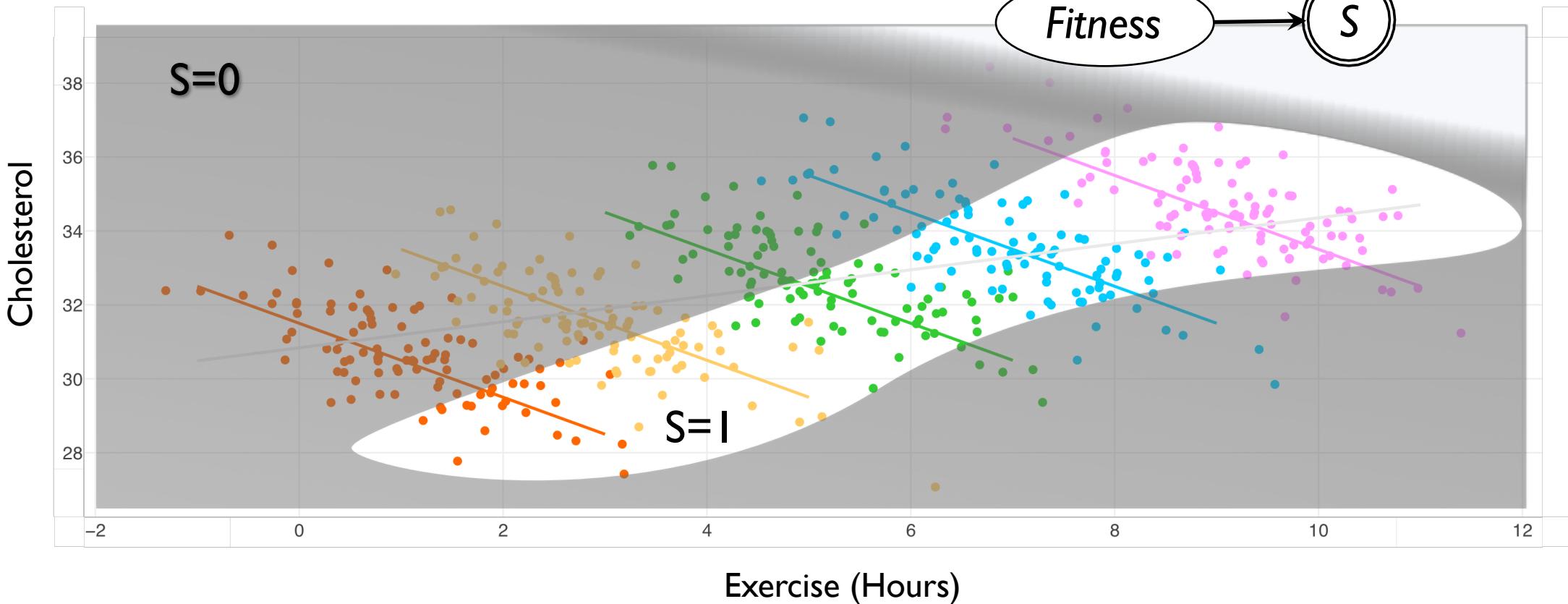
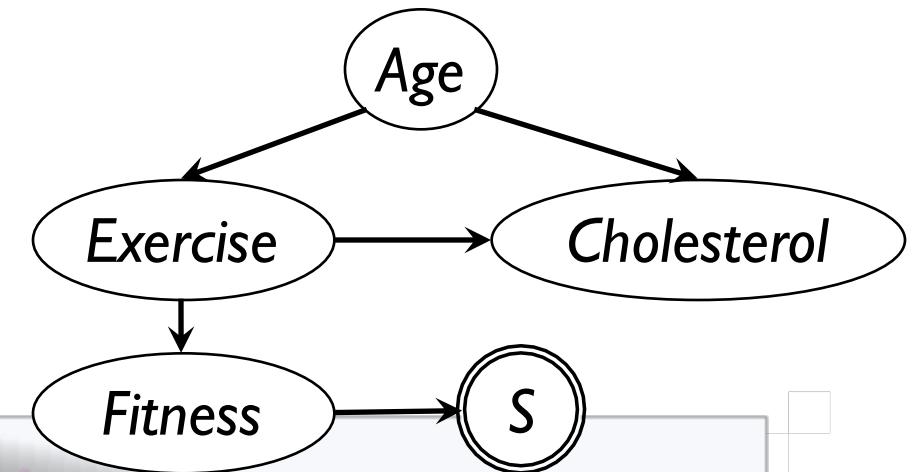
# Challenge I: Confounding Bias

- Age 10
- Age 20
- Age 30
- Age 40
- Age 50



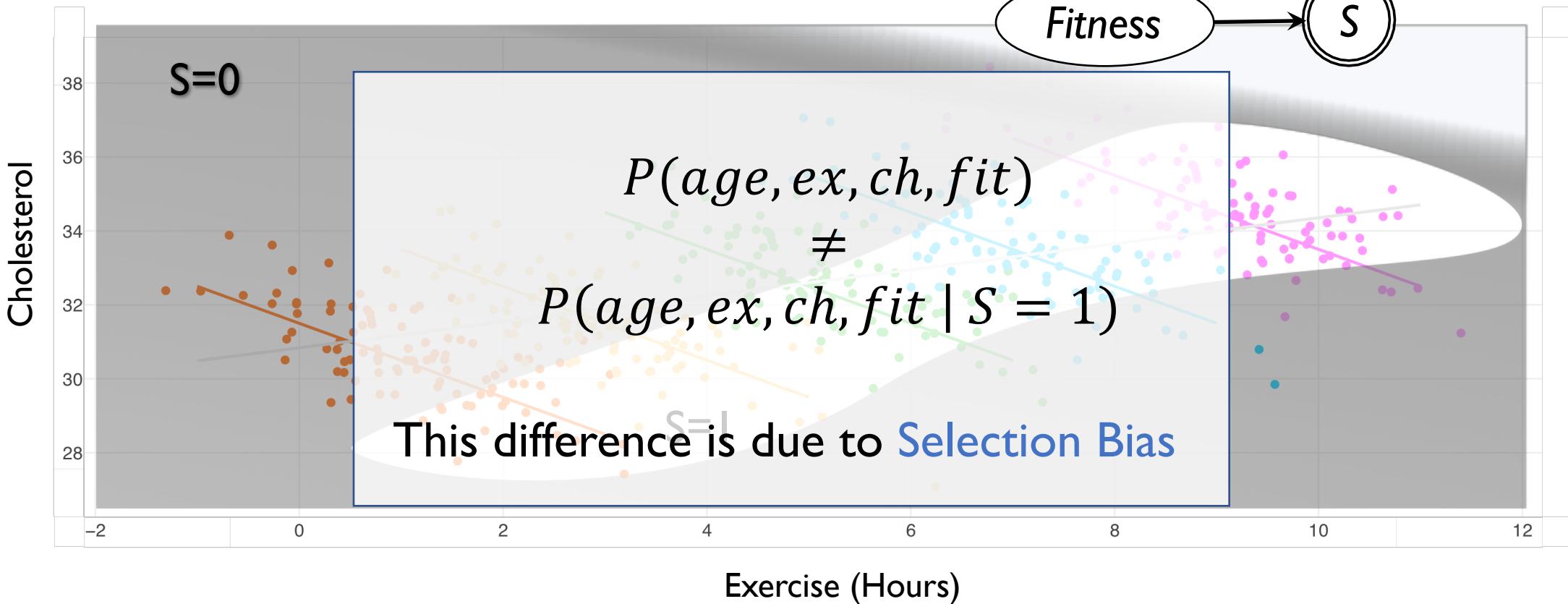
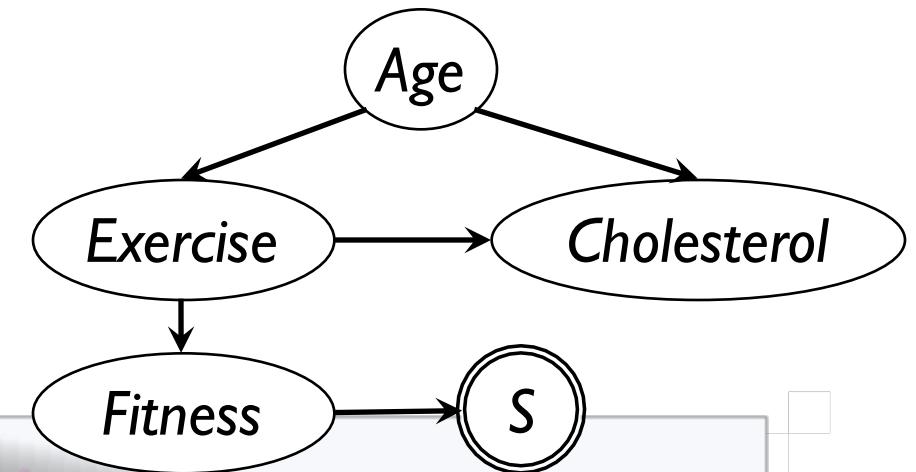
# Challenge 2: Selection Bias

Variables in the system affect the inclusion of units in the sample



# Challenge 2: Selection Bias

Variables in the system affect the inclusion of units in the sample

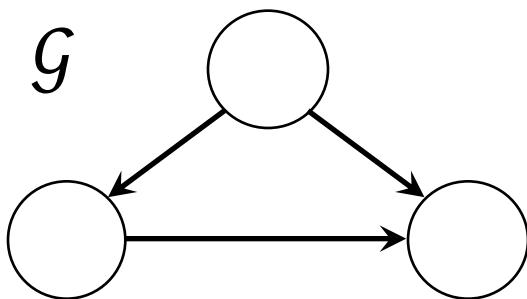


# Current literature

|              | No Confounding                                                                                                                                                                             | Confounding                                                                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Selection | <p><b>Association = Causation</b><br/><b>No control</b></p>                                                                                                                                | <p><b>Complete Algorithms</b><br/>[Tian and Pearl '02; Huang and Valtorta '06; Shpitser and Pearl '06; Bareinboim and Pearl '12]</p>                                              |
| Selection    | <p><b>Controlling Selection Bias</b><br/>[Bareinboim and Pearl '12]</p> <p><b>Recovering from Selection Bias in Causal and Statistical Inference</b><br/>[Bareinboim, Tian, Pearl '14]</p> | <p><b>RCE</b><br/>[Bareinboim, Tian, Pearl '15]</p> <p><b>Generalized Adjustment</b><br/>[Correa, Tian, Bareinboim '18]</p> <p><b>IDSB</b><br/>[Correa, Tian, Bareinboim '19]</p> |

# Problem 1

Given:



Variables  
 $X, Y$

|  |  | $S$ | $P(v S = 1)$ |
|--|--|-----|--------------|
|  |  | I   | ...          |
|  |  | I   | ...          |
|  |  | I   | ...          |

$P$

Is there a function  $f$  such that

$$P(y|do(x)) = f(P_1)$$

?

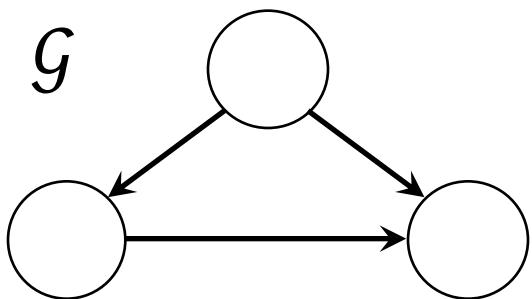
# Result I

Theorem I:

Let  $X, Y \subset V$  be two disjoint sets of variables and  $\mathcal{G}$  a causal diagram over  $V$  and  $S$ . If  $(Y \perp\!\!\!\perp S)_{\mathcal{G}_{XY}^{pbd}}$ , then  $P_x(y)$  is not recoverable from  $P(\nu \mid S = 1)$  in  $\mathcal{G}$ .

# Problem II

Given:



|  | $S$ | $P(v S = 1)$ |
|--|-----|--------------|
|  |     | ...          |
|  |     | ...          |
|  |     | ...          |

$P_1$

|  | $P(t)$ |
|--|--------|
|  | ...    |
|  | ...    |
|  | ...    |

$P_2$

Is there a function  $f$  such that

$$P(y|do(x)) = f(P_1, P_2)$$

?

# Result II

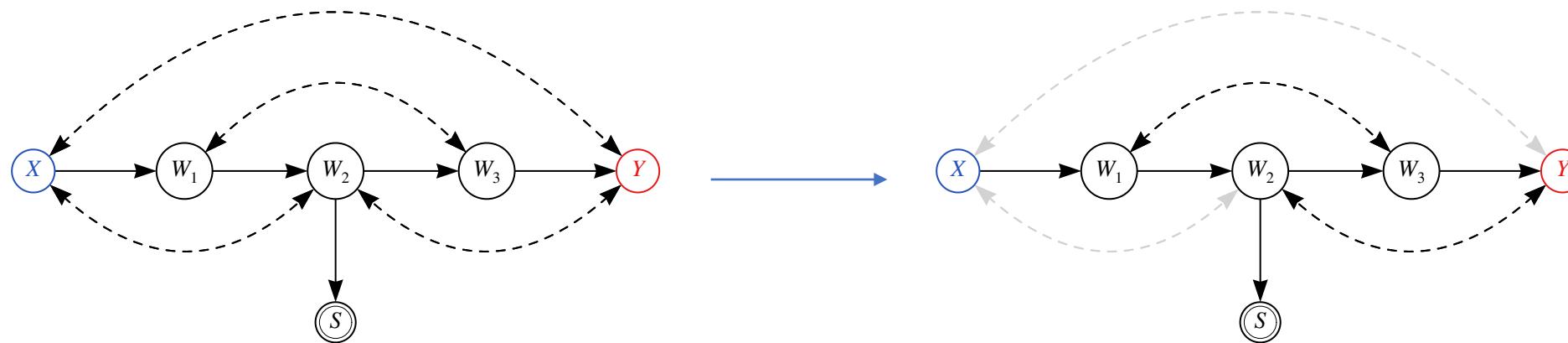
## Algorithm **IDS<sub>B</sub>**

Given a causal diagram, a selection-biased distribution and external data over a subset of the variables and the variables of interest ( $X, Y$ ); returns an expression for  $P_x(y)$  in terms of the input or *failure*.

Strictly more powerful than the best known algorithm that accepts both biased and unbiased data.

# Decomposing the Problem

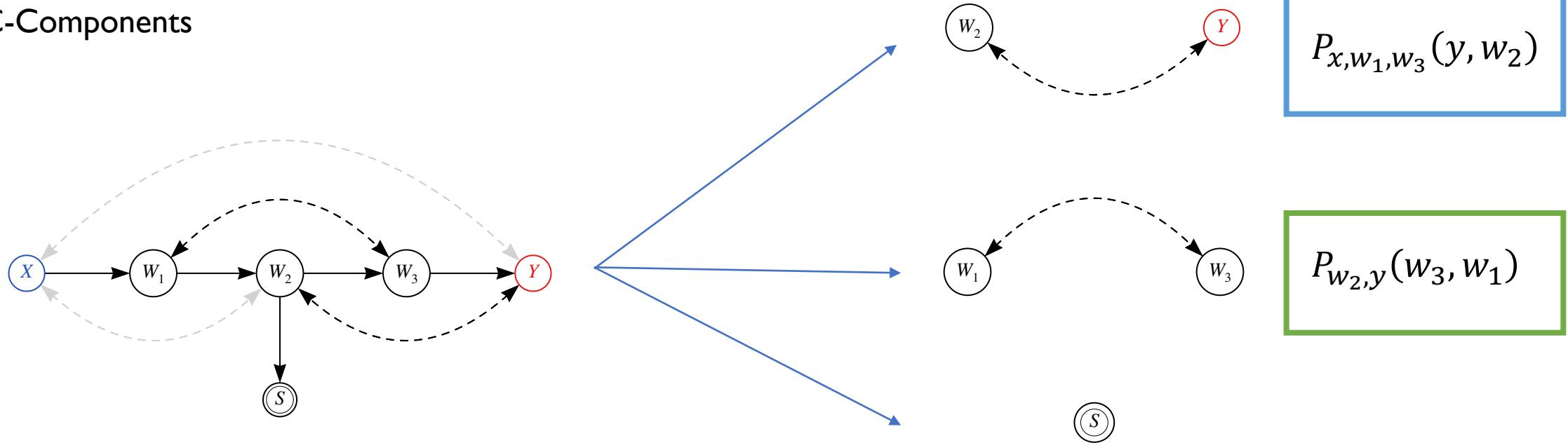
Intervention



$$P_x(y) = \sum_{w_1, w_2, w_3} P_x(y, w_3, w_2, w_1)$$

# Decomposing the Problem

C-Components



$$P_x(y) = \sum_{w_1, w_2, w_3} P_x(y, w_3, w_2, w_1) = \sum_{w_1, w_2, w_3} P_{x, w_1, w_3}(y, w_2) P_{w_2, y}(w_3, w_1)$$

# Summary

1. Complete characterization recoverable causal effects from the causal diagram and a selection-biased probability distribution.
2. Sufficient procedure to recover causal effects from a causal diagram, selection-biased distributions and auxiliary unbiased data which is strictly more powerful than state-of-the-art procedure.

Thanks!

