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Cholesterol

Challenge |: Confounding Bias

What’s the causal effect of Exercise on Cholesterol?
What about P(cholesterol | exercise) ?
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Cholesterol

Challenge |: Confounding Bias

W Age |10 mAge 30 = Age 50
Age 20 = Age 40
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Cholesterol

Challenge |: Confounding Bias

5 Age |0 BAge 30 = Age 50
Age 20 E Age 40
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P(cholesterol | do(exercise))
—+
P(cholesterol | exercise)

This difference is called Confounding Bias
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Cholesterol

Challenge 2: Selection Bias

Variables in the system affect the inclusion of
units in the sample
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Cholesterol

Challenge 2: Selection Bias

Variables in the system affect the inclusion of

units in the sample
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This difference is due to Selection Bias

P(age,ex,ch, fit)
—+

P(age,ex,ch, fit|S = 1)
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Problem |

Given: Is there a function f such that

g Variables
X,Y

P(yldo(x)) = f(P1)
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Result |

Theorem |I:

Let X, Y c V be two disjoint sets of variables and G a causal diagram
over Vand S.If (Y L S) _p»a, then P,(y) is not recoverable from

gXY
P(v|S=1)ing.



Problem ||

Given:

4

Variables

XY

Is there a function f such that

P(yldo(x)) = f(P1, P;)
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Result |l

Algorithm IDSB

Given a causal diagram, a selection-biased distribution and external data
over a subset of the variables and the variables of interest (X, Y);
returns an expression for P,.(y) in terms of the input or failure.

Strictly more powerful than the best known algorithm that accepts
both biased and unbiased data.



Decomposing the Problem

Intervention




Decomposing the Problem

C-Components @ @
N .- Pew,ws (V, W2)

> @ @ sz,y(WB'W1)

Px(y) — Z Px(yr W3,W2,W1) — z Px,Wl,W3 (y' WZ) sz,y(WSle)

W1,W3,W3 W1,W3,W3



Summary

|. Complete characterization recoverable causal effects from
the causal diagram and a selection-biased probability

distribution.

2. Sufficient procedure to recover causal effects from a causal
diagram, selection-biased distributions and auxiliary
unbiased data which is strictly more powerful than state-of-

the-art procedure.
Thanks!






