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Generalization Challenges

One of the main tasks in ML is to learn/train models of an underlying process using data
generated by the same process.

In fact, whenever enough data is provided, several approaches are currently capable of
learning very accurately the underlying distribution.

In practice, however, the environment in which the data is collected is almost never the
same as the one where the model is intended to be used, and will be deployed.

Under these constraints, the performance of the model depends on the underlying,
structural similarities between training and target environments.
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* How to generalize the model learned in the source environment to different (but related)
target environments?

e Do we need to obtain samples from II* and train a new model?
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P(x,y,w)=P(w) P(x|w) P(y

x,w)| are the same in both environments,
which is implied by this causal model.
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New Website (IT") * The target distribution P*(y|x) can be expressed as:
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e Under the assumptions implied by the diagram, only
P*(w) needs to be measured in the target environment,

while the other distributions can be reused from the data
collected Iin the source environment.
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Encode the assumptions about the differences

" . ———> Selection diagrams (with )
and commonalities across environments.

ldentify the stable mechanisms across
environments.

Determine the variables that need to be re- Exploit Causality Theory
measured.

Construct an estimator from the available data.
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Results

We introduce a novel graphical decomposition of the observed/learned distribution
into factors that take into account the latent structure, which generalizes C-
components (Tian & Pearl 2002), and is suitable to reason about distributions with
different sets of measured variables.

We derive a complete algorithm that determines if a distribution P*(y|x) can be
uniquely identified from distributions P(v) and P*(w) (W C V) based on the

assumptions encoded in graphs corresponding to the source and target domains.

We connect this problem with the problem of identifying the effect of stochastic
plans and how it reduces to the former problem.
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Conclusions

e | everaging causal inference tools, we solved the problem of generalizability of
probability distributions across different, but related environments.

e We proposed a sound and complete procedure to decide whether a target distribution is
transportable from observations in a source domain and partial measurements in the

target domain, following the assumptions encoded in graphical models representing the
data generating process in the domains.

e | everaging these results, we solved the problem of identification of stochastic
interventions.




Thank you!



