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Generalization Challenges
• One of the main tasks in ML is to learn/train models of an underlying process using data 

generated by the same process.

• In fact, whenever enough data is provided, several approaches are currently capable of 
learning very accurately the underlying distribution.

• In practice, however, the environment in which the data is collected is almost never the 
same as the one where the model is intended to be used, and will be deployed.

• Under these constraints, the performance of the model depends on the underlying, 
structural similarities between training and target environments.
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Statistical Transportability

• How to generalize the model learned in the source environment to different (but related) 
target environments?

• Do we need to obtain samples from 𝚷* and train a new model?
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• The target distribution P*(y|x) can be expressed as:

• Under the assumptions implied by the diagram, only 
P*(w) needs to be measured in the target environment, 
while the other distributions can be reused from the data 
collected in the source environment.
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Results
We introduce a novel graphical decomposition of the observed/learned distribution 
into factors that take into account the latent structure, which generalizes C-
components (Tian & Pearl 2002), and is suitable to reason about distributions with 
different sets of measured variables.

We derive a complete algorithm that determines if a distribution P*(y|x) can be 
uniquely identified from distributions P(v) and P*(w) (W ⊆ V) based on the 
assumptions encoded in graphs corresponding to the source and target domains.

We connect this problem with the problem of identifying the effect of stochastic 
plans and how it reduces to the former problem.
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Conclusions
• Leveraging causal inference tools, we solved the problem of generalizability of 

probability distributions across different, but related environments.

• We proposed a sound and complete procedure to decide whether a target distribution is 
transportable from observations in a source domain and partial measurements in the 
target domain, following the assumptions encoded in graphical models representing the 
data generating process in the domains.

• Leveraging these results, we solved the problem of identification of stochastic 
interventions.
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