
A Calculus for Stochastic Interventions: 
Causal Effect Identification and 

Surrogate Experiments
Juan D. Correa   and   Elias Bareinboim


{jdcorrea, eb}@cs.columbia.edu

1

February, 2020, New York



Outline

2



Outline
• Hard/atomic interventions vs. Soft/non-atomic interventions

• Graphical representation

• Inferences rules for soft interventions (σ-calculus)

• Imperfect surrogate experiments

• Conclusions

2



Motivating example

3



Motivating example
• Consider a tutoring program in place at a certain school.

3



Motivating example
• Consider a tutoring program in place at a certain school.

• For each student, we observe the GPA at the beginning of the term, their 
motivation (low, high), whether they got tutoring or not, and their GPA at the end.

3



Motivating example
• Consider a tutoring program in place at a certain school.

• For each student, we observe the GPA at the beginning of the term, their 
motivation (low, high), whether they got tutoring or not, and their GPA at the end.

3

W
(previous GPA)

Z(motivation)

• Motivation depends (among other not observed 
factors) on the previous GPA.



Motivating example
• Consider a tutoring program in place at a certain school.

• For each student, we observe the GPA at the beginning of the term, their 
motivation (low, high), whether they got tutoring or not, and their GPA at the end.

3

X

W

(tutoring)

(previous GPA)

Z(motivation)

• Motivation depends (among other not observed 
factors) on the previous GPA.

• Students get tutoring depending on their 
motivation.



Motivating example
• Consider a tutoring program in place at a certain school.

• For each student, we observe the GPA at the beginning of the term, their 
motivation (low, high), whether they got tutoring or not, and their GPA at the end.

3

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

• Motivation depends (among other not observed 
factors) on the previous GPA.

• Students get tutoring depending on their 
motivation.

• The GPA at the end of the term is a function of the 
previous GPA, student’s motivation and getting 
tutoring or not.



Motivating example
• Consider a tutoring program in place at a certain school.

• For each student, we observe the GPA at the beginning of the term, their 
motivation (low, high), whether they got tutoring or not, and their GPA at the end.

3

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) RegimeG

• Motivation depends (among other not observed 
factors) on the previous GPA.

• Students get tutoring depending on their 
motivation.

• The GPA at the end of the term is a function of the 
previous GPA, student’s motivation and getting 
tutoring or not.



4

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

Motivating example



4

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

• Using machine learning, and with enough data, a 
students GPA can be predicted with small error 
given other features i.e., P(y | w, z, x).

Motivating example



4

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

• Using machine learning, and with enough data, a 
students GPA can be predicted with small error 
given other features i.e., P(y | w, z, x).

• This distribution is a model that reflects the current/
natural regime, but we are interested in taking 
decisions to improve the students GPA.

Motivating example



4

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

• Using machine learning, and with enough data, a 
students GPA can be predicted with small error 
given other features i.e., P(y | w, z, x).

• This distribution is a model that reflects the current/
natural regime, but we are interested in taking 
decisions to improve the students GPA.

• Taking decisions amount to intervening the current 
regime. Hence, we are interested in predicting 
student’s GPA receiving tutoring in a hypothetical 
(unrealized) reality.

Motivating example



4

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

• Using machine learning, and with enough data, a 
students GPA can be predicted with small error 
given other features i.e., P(y | w, z, x).

• This distribution is a model that reflects the current/
natural regime, but we are interested in taking 
decisions to improve the students GPA.

• Taking decisions amount to intervening the current 
regime. Hence, we are interested in predicting 
student’s GPA receiving tutoring in a hypothetical 
(unrealized) reality.

• This is a causal inference question!

Motivating example
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• Hard/atomic: σX=do(X=x) set variable X to a constant value x.   

 (Pearl’s original treatment considered mostly this intervention. )
• Every student gets tutoring.

• Conditional: σX=g(w) sets the variable X to output the result of a function g that depends 
on a set of observable variables W.
• Students get tutoring if and only if they have a low GPA.

• Stochastic: σX=P*(x|w) sets the variable X to follow a given probability distribution 
conditional on a set of variables W.
• Students with low GPA enter a raffle for 80% of the spots, other interested students 

enter for the remaining 20%.
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• Insertion/deletion of observations:

• Change of regimes under observation:

• Change of regimes without observations:

8
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Surrogate Experiments
• It’s not uncommon that the effect of a certain 

intervention is not identifiable (not uniquely 
computable) from observational data alone 
whenever unobserved confounders are present.

• Experiments over a set of surrogate variables Z 
may be more accessible to manipulation than the 
target effect σX, e.g., randomizing diet vs 
randomizing cholesterol.

• Those surrogate experiments can be leveraged to 
identify the effect of the interventions of interest.
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Summary of the Results

We introduce a set of inference rules called σ-calculus, which generalizes 
Pearl’s do-calculus, to reason about the effect of general types of 
interventions. Further, we provide a syntactical method for deriving and 
verifying claims about such interventions given a causal graph.

We develop an efficient procedure to determine the identifiability of the 
(conditional) effect of non-atomic interventions from a combination of 
observational and experimental data given a causal diagram.
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Construct an estimator from the available data.
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Conclusions
• σ-calculus allows one to discover and verify, from a causal graph, logical 

statements about general interventions suitable to capture real-world situations.

• These rules can be used to identify the effect of interventions from a combination 
of observational and experimental data.

• Our algorithm searches for a reduction of the effect of interest to the set of 
observed distributions (observational and experimental); if found, it returns a 
corresponding mapping expression.
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Thank you!
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