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Using machine learning, and with enough data, a
students GPA can be predicted with small error
given other features i.e., P(y | w, z, x).

This distribution is a model that reflects the current/
natural regime, but we are Interested In taking
decisions to improve the students GPA.

Taking decisions amount to intervening the current
regime. Hence, we are Interested In predicting
student’s GPA receiving tutoring in a hypothetical
(unrealized) reality.

This is a causal inference question!
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Some types of Interventions

e Hard/atomic: ox=do(X=x) set variable X to a constant value x.
(Pearl’s original treatment considered mostly this intervention. )

* Every student gets tutoring.

e Conditional: ox=g(w) sets the variable X to output the result of a function ¢ that depends
on a set of observable variables W.

* Students get tutoring if and only if they have a low GPA.

e Stochastic: ox=P*(x|w) sets the variable X to follow a given probability distribution
conditional on a set of variables W.

o Students with low GPA enter a raffle for 80% of the spots, other interested students
enter for the remaining 20%.
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® /nsertion/deletion of observations:

P(y | w,t;0x) = P(Yy | W; o) if (YLT|W)in¥

Oox

® Change of regimes under observation:
P(y | x,w;o0x) = P(y | X, w) if YLZ|W)in%,x and Sx

® Change of regimes without observations:

P(y | w,ox) = P(y | W) if (Y LZ|W)in ?UXX(W) and ?X(W)
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g

e |[t’'s not uncommon that the effect of a certain
intervention is not identifiable (not uniquely Input: { P(v) }
computable) from observational data alone
whenever unobserved confounders are present. Query: { P(y; o) }

ldentifiable?
No

e Experiments over a set of surrogate variables Z

may be more accessible to manipulation than the | ju.1p0) €

target effect ox, e.g., randomizing diet vs P(v;o7l),

randomizing cholesterol. Pvioz), ...} . FRISNTANE y
eS

| Query: { P(y, ox) }
e Those surrogate experiments can be leveraged to
identify the effect of the interventions of interest.
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Summary of the Results

We introduce a set of inference rules called o-calculus, which generalizes
Pearl’s do-calculus, to reason about the effect of general types of
interventions. Further, we provide a syntactical method for deriving and
verifying claims about such interventions given a causal graph.

We develop an efficient procedure to determine the identifiability of the
(conditional) effect of non-atomic interventions from a combination of

observational and experimental data given a causal diagram.
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Proposed Strategy

Encode qualitative assumptions natural and
intervened domain graphically.

Find the mechanisms composing the effect of
intervention.

Derive the needed mechanisms from the given
distributions.

Construct an estimator from the available data.

13

—

Diagrams annotated with
nodes.

Use o-calculus or
equivalent algorithmic
procedure.
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Conclusions

e o-calculus allows one to discover and verify, from a causal graph, logical
statements about general interventions suitable to capture real-world situations.

e These rules can be used to identify the effect of interventions from a combination
of observational and experimental data.

e Qur algorithm searches for a reduction of the effect of interest to the set of
observed distributions (observational and experimental); if found, it returns a
corresponding mapping expression.
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